Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Memory-Adjustable Navigation Piles with Applications to Sorting and Convex Hulls (1510.07185v1)

Published 24 Oct 2015 in cs.DS

Abstract: We consider space-bounded computations on a random-access machine (RAM) where the input is given on a read-only random-access medium, the output is to be produced to a write-only sequential-access medium, and the available workspace allows random reads and writes but is of limited capacity. The length of the input is $N$ elements, the length of the output is limited by the computation, and the capacity of the workspace is $O(S)$ bits for some predetermined parameter $S$. We present a state-of-the-art priority queue---called an adjustable navigation pile---for this restricted RAM model. Under some reasonable assumptions, our priority queue supports $\mathit{minimum}$ and $\mathit{insert}$ in $O(1)$ worst-case time and $\mathit{extract}$ in $O(N/S + \lg{} S)$ worst-case time for any $S \geq \lg{} N$. We show how to use this data structure to sort $N$ elements and to compute the convex hull of $N$ points in the two-dimensional Euclidean space in $O(N2/S + N \lg{} S)$ worst-case time for any $S \geq \lg{} N$. Following a known lower bound for the space-time product of any branching program for finding unique elements, both our sorting and convex-hull algorithms are optimal. The adjustable navigation pile has turned out to be useful when designing other space-efficient algorithms, and we expect that it will find its way to yet other applications.

Citations (1)

Summary

We haven't generated a summary for this paper yet.