Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Polar sets of anisotropic Gaussian random fields (1208.0721v1)

Published 3 Aug 2012 in math.PR, math.ST, and stat.TH

Abstract: This paper studies polar sets of anisotropic Gaussian random fields, i.e. sets which a Gaussian random field does not hit almost surely. The main assumptions are that the eigenvalues of the covariance matrix are bounded from below and that the canonical metric associated with the Gaussian random field is dominated by an anisotropic metric. We deduce an upper bound for the hitting probabilities and conclude that sets with small Hausdorff dimension are polar. Moreover, the results allow for a translation of the Gaussian random field by a random field, that is independent of the Gaussian random field and whose sample functions are of bounded H\"older norm.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube