Papers
Topics
Authors
Recent
2000 character limit reached

Two-Way Latent Grouping Model for User Preference Prediction

Published 4 Jul 2012 in cs.IR, cs.LG, and stat.ML | (1207.1414v1)

Abstract: We introduce a novel latent grouping model for predicting the relevance of a new document to a user. The model assumes a latent group structure for both users and documents. We compared the model against a state-of-the-art method, the User Rating Profile model, where only users have a latent group structure. We estimate both models by Gibbs sampling. The new method predicts relevance more accurately for new documents that have few known ratings. The reason is that generalization over documents then becomes necessary and hence the twoway grouping is profitable.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.