Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Preference Modeling by Exploiting Latent Components of Ratings (1710.07072v1)

Published 19 Oct 2017 in cs.IR

Abstract: Understanding user preference is essential to the optimization of recommender systems. As a feedback of user's taste, rating scores can directly reflect the preference of a given user to a given product. Uncovering the latent components of user ratings is thus of significant importance for learning user interests. In this paper, a new recommendation approach, called LCR, was proposed by investigating the latent components of user ratings. The basic idea is to decompose an existing rating into several components via a cost-sensitive learning strategy. Specifically, each rating is assigned to several latent factor models and each model is updated according to its predictive errors. Afterwards, these accumulated predictive errors of models are utilized to decompose a rating into several components, each of which is treated as an independent part to retrain the latent factor models. Finally, all latent factor models are combined linearly to estimate predictive ratings for users. In contrast to existing methods, LCR provides an intuitive preference modeling strategy via multiple component analysis at an individual perspective. Meanwhile, it is verified by the experimental results on several benchmark datasets that the proposed method is superior to the state-of-art methods in terms of recommendation accuracy.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.