Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Gene Expression Time Course Clustering with Countably Infinite Hidden Markov Models (1206.6824v1)

Published 27 Jun 2012 in cs.LG, cs.CE, and stat.ML

Abstract: Most existing approaches to clustering gene expression time course data treat the different time points as independent dimensions and are invariant to permutations, such as reversal, of the experimental time course. Approaches utilizing HMMs have been shown to be helpful in this regard, but are hampered by having to choose model architectures with appropriate complexities. Here we propose for a clustering application an HMM with a countably infinite state space; inference in this model is possible by recasting it in the hierarchical Dirichlet process (HDP) framework (Teh et al. 2006), and hence we call it the HDP-HMM. We show that the infinite model outperforms model selection methods over finite models, and traditional time-independent methods, as measured by a variety of external and internal indices for clustering on two large publicly available data sets. Moreover, we show that the infinite models utilize more hidden states and employ richer architectures (e.g. state-to-state transitions) without the damaging effects of overfitting.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.