Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Iterative Locally Linear Embedding Algorithm (1206.6463v1)

Published 27 Jun 2012 in cs.LG and stat.ML

Abstract: Local Linear embedding (LLE) is a popular dimension reduction method. In this paper, we first show LLE with nonnegative constraint is equivalent to the widely used Laplacian embedding. We further propose to iterate the two steps in LLE repeatedly to improve the results. Thirdly, we relax the kNN constraint of LLE and present a sparse similarity learning algorithm. The final Iterative LLE combines these three improvements. Extensive experiment results show that iterative LLE algorithm significantly improve both classification and clustering results.

Citations (46)

Summary

We haven't generated a summary for this paper yet.