Large Scale Variational Bayesian Inference for Structured Scale Mixture Models (1206.6437v1)
Abstract: Natural image statistics exhibit hierarchical dependencies across multiple scales. Representing such prior knowledge in non-factorial latent tree models can boost performance of image denoising, inpainting, deconvolution or reconstruction substantially, beyond standard factorial "sparse" methodology. We derive a large scale approximate Bayesian inference algorithm for linear models with non-factorial (latent tree-structured) scale mixture priors. Experimental results on a range of denoising and inpainting problems demonstrate substantially improved performance compared to MAP estimation or to inference with factorial priors.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.