Papers
Topics
Authors
Recent
2000 character limit reached

Nonparametric Latent Tree Graphical Models: Inference, Estimation, and Structure Learning

Published 16 Jan 2014 in stat.ML | (1401.3940v1)

Abstract: Tree structured graphical models are powerful at expressing long range or hierarchical dependency among many variables, and have been widely applied in different areas of computer science and statistics. However, existing methods for parameter estimation, inference, and structure learning mainly rely on the Gaussian or discrete assumptions, which are restrictive under many applications. In this paper, we propose new nonparametric methods based on reproducing kernel Hilbert space embeddings of distributions that can recover the latent tree structures, estimate the parameters, and perform inference for high dimensional continuous and non-Gaussian variables. The usefulness of the proposed methods are illustrated by thorough numerical results.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.