Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Better Than Their Reputation? On the Reliability of Relevance Assessments with Students (1206.4802v1)

Published 21 Jun 2012 in cs.IR

Abstract: During the last three years we conducted several information retrieval evaluation series with more than 180 LIS students who made relevance assessments on the outcomes of three specific retrieval services. In this study we do not focus on the retrieval performance of our system but on the relevance assessments and the inter-assessor reliability. To quantify the agreement we apply Fleiss' Kappa and Krippendorff's Alpha. When we compare these two statistical measures on average Kappa values were 0.37 and Alpha values 0.15. We use the two agreement measures to drop too unreliable assessments from our data set. When computing the differences between the unfiltered and the filtered data set we see a root mean square error between 0.02 and 0.12. We see this as a clear indicator that disagreement affects the reliability of retrieval evaluations. We suggest not to work with unfiltered results or to clearly document the disagreement rates.

Citations (24)

Summary

We haven't generated a summary for this paper yet.