Degenerate flag varieties: moment graphs and Schröder numbers (1206.4178v1)
Abstract: We study geometric and combinatorial properties of the degenerate flag varieties of type A. These varieties are acted upon by the automorphism group of a certain representation of a type A quiver, containing a maximal torus T. Using the group action, we describe the moment graphs, encoding the zero- and one-dimensional T-orbits. We also study the smooth and singular loci of the degenerate flag varieties. We show that the Euler characteristic of the smooth locus is equal to the large Schr\"oder number and the Poincar\'e polynomial is given by a natural statistics counting the number of diagonal steps in a Schr\"oder path. As an application we obtain a new combinatorial description of the large and small Schr\"oder numbers and their q-analogues.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.