Papers
Topics
Authors
Recent
2000 character limit reached

Propagation using Chain Event Graphs

Published 13 Jun 2012 in cs.AI and cs.CL | (1206.3293v1)

Abstract: A Chain Event Graph (CEG) is a graphial model which designed to embody conditional independencies in problems whose state spaces are highly asymmetric and do not admit a natural product structure. In this paer we present a probability propagation algorithm which uses the topology of the CEG to build a transporter CEG. Intriungly,the transporter CEG is directly analogous to the triangulated Bayesian Network (BN) in the more conventional junction tree propagation algorithms used with BNs. The propagation method uses factorization formulae also analogous to (but different from) the ones using potentials on cliques and separators of the BN. It appears that the methods will be typically more efficient than the BN algorithms when applied to contexts where there is significant asymmetry present.

Citations (32)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.