Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Separation Theorem for Chain Event Graphs (1501.05215v1)

Published 21 Jan 2015 in stat.ME and cs.AI

Abstract: Bayesian Networks (BNs) are popular graphical models for the representation of statistical problems embodying dependence relationships between a number of variables. Much of this popularity is due to the d-separation theorem of Pearl and Lauritzen, which allows an analyst to identify the conditional independence statements that a model of the problem embodies using only the topology of the graph. However for many problems the complete model dependence structure cannot be depicted by a BN. The Chain Event Graph (CEG) was introduced for these types of problem. In this paper we introduce a separation theorem for CEGs, analogous to the d-separation theorem for BNs, which likewise allows an analyst to identify the conditional independence structure of their model from the topology of the graph.

Citations (20)

Summary

We haven't generated a summary for this paper yet.