Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Cross-Validation via Sequential Testing (1206.2248v6)

Published 11 Jun 2012 in cs.LG and stat.ML

Abstract: With the increasing size of today's data sets, finding the right parameter configuration in model selection via cross-validation can be an extremely time-consuming task. In this paper we propose an improved cross-validation procedure which uses nonparametric testing coupled with sequential analysis to determine the best parameter set on linearly increasing subsets of the data. By eliminating underperforming candidates quickly and keeping promising candidates as long as possible, the method speeds up the computation while preserving the capability of the full cross-validation. Theoretical considerations underline the statistical power of our procedure. The experimental evaluation shows that our method reduces the computation time by a factor of up to 120 compared to a full cross-validation with a negligible impact on the accuracy.

Citations (52)

Summary

We haven't generated a summary for this paper yet.