Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 42 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

A New Greedy Algorithm for Multiple Sparse Regression (1206.1402v1)

Published 7 Jun 2012 in stat.ML and cs.LG

Abstract: This paper proposes a new algorithm for multiple sparse regression in high dimensions, where the task is to estimate the support and values of several (typically related) sparse vectors from a few noisy linear measurements. Our algorithm is a "forward-backward" greedy procedure that -- uniquely -- operates on two distinct classes of objects. In particular, we organize our target sparse vectors as a matrix; our algorithm involves iterative addition and removal of both (a) individual elements, and (b) entire rows (corresponding to shared features), of the matrix. Analytically, we establish that our algorithm manages to recover the supports (exactly) and values (approximately) of the sparse vectors, under assumptions similar to existing approaches based on convex optimization. However, our algorithm has a much smaller computational complexity. Perhaps most interestingly, it is seen empirically to require visibly fewer samples. Ours represents the first attempt to extend greedy algorithms to the class of models that can only/best be represented by a combination of component structural assumptions (sparse and group-sparse, in our case).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.