Papers
Topics
Authors
Recent
2000 character limit reached

Uniqueness of quasi-Einstein metrics on 3-dimensional homogeneous manifolds (1205.6168v5)

Published 28 May 2012 in math.DG

Abstract: The purpose of this article is to study the existence and uniqueness of quasi-Einstein structures on $3$-dimensional homogeneous Riemannian manifolds. To this end, we use the eight model geometries for 3-dimensional manifolds identified by Thurston. First, we present here a complete description of quasi-Einstein metrics on $3$-dimensional homogeneous manifolds with isometry group of dimension $4.$ In addition, we shall show the absence of such gradient structure on $Sol3,$ which has $3$-dimensional isometry group. Moreover, we prove that Berger's spheres carry a non-trivial quasi-Einstein structure with non gradient associated vector field, this shows that a theorem due to Perelman can not be extend to quasi-Einstein metrics. Finally, we prove that a $3$-dimensional homogeneous manifold carrying a gradient quasi-Einstein structure is either Einstein or $\mathbb{H}2_{\kappa} \times \mathbb{R}.$

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.