Sparse Signal Recovery in Hilbert Spaces
Abstract: This paper reports an effort to consolidate numerous coherence-based sparse signal recovery results available in the literature. We present a single theory that applies to general Hilbert spaces with the sparsity of a signal defined as the number of (possibly infinite-dimensional) subspaces participating in the signal's representation. Our general results recover uncertainty relations and coherence-based recovery thresholds for sparse signals, block-sparse signals, multi-band signals, signals in shift-invariant spaces, and signals in finite unions of (possibly infinite-dimensional) subspaces. Moreover, we improve upon and generalize several of the existing results and, in many cases, we find shortened and simplified proofs.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.