Papers
Topics
Authors
Recent
2000 character limit reached

Subspace Recovery from Structured Union of Subspaces

Published 23 Apr 2013 in cs.IT and math.IT | (1304.6281v2)

Abstract: Lower dimensional signal representation schemes frequently assume that the signal of interest lies in a single vector space. In the context of the recently developed theory of compressive sensing (CS), it is often assumed that the signal of interest is sparse in an orthonormal basis. However, in many practical applications, this requirement may be too restrictive. A generalization of the standard sparsity assumption is that the signal lies in a union of subspaces. Recovery of such signals from a small number of samples has been studied recently in several works. Here, we consider the problem of subspace recovery in which our goal is to identify the subspace (from the union) in which the signal lies using a small number of samples, in the presence of noise. More specifically, we derive performance bounds and conditions under which reliable subspace recovery is guaranteed using maximum likelihood (ML) estimation. We begin by treating general unions and then obtain the results for the special case in which the subspaces have structure leading to block sparsity. In our analysis, we treat both general sampling operators and random sampling matrices. With general unions, we show that under certain conditions, the number of measurements required for reliable subspace recovery in the presence of noise via ML is less than that implied using the restricted isometry property which guarantees signal recovery. In the special case of block sparse signals, we quantify the gain achievable over standard sparsity in subspace recovery. Our results also strengthen existing results on sparse support recovery in the presence of noise under the standard sparsity model.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.