Entropy-driven phase transition in low-temperature antiferromagnetic Potts models (1205.4472v3)
Abstract: We prove the existence of long-range order at sufficiently low temperatures, including zero temperature, for the three-state Potts antiferromagnet on a class of quasi-transitive plane quadrangulations, including the diced lattice. More precisely, we show the existence of (at least) three infinite-volume Gibbs measures, which exhibit spontaneous magnetization in the sense that vertices in one sublattice have a higher probability to be in one state than in either of the other two states. For the special case of the diced lattice, we give a good rigorous lower bound on this probability, based on computer-assisted calculations that are not available for the other lattices.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.