Competitively Coupled Maps and Spatial Pattern Formation (1204.2463v2)
Abstract: Spatial pattern formation is a key feature of many natural systems in physics, chemistry and biology. The essential theoretical issue in understanding pattern formation is to explain how a spatially homogeneous initial state can undergo spontaneous symmetry breaking leading to a stable spatial pattern. This problem is most commonly studied using partial differential equations to model a reaction-diffusion system of the type introduced by Turing. We report here on a much simpler and more robust model of spatial pattern formation, which is formulated as a novel type of coupled map lattice. In our model, the local site dynamics are coupled through a competitive, rather than diffusive, interaction. Depending only on the strength of the interaction, this competitive coupling results in spontaneous symmetry breaking of a homogeneous initial configuration and the formation of stable spatial patterns. This mechanism is very robust and produces stable pattern formation for a wide variety of spatial geometries, even when the local site dynamics is trivial.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.