2000 character limit reached
Coherent states for systems of $L^2-$supercritical nonlinear Schrödinger equations (1203.4249v1)
Published 19 Mar 2012 in math.AP
Abstract: We consider the propagation of wave packets for a nonlinear Schr\"odinger equation, with a matrix-valued potential, in the semi-classical limit. For a matrix-valued potential, Strichartz estimates are available under long range assumptions. Under these assumptions, for an initial coherent state polarized along an eigenvector, we prove that the wave function remains in the same eigenspace, in a scaling such that nonlinear effects cannot be neglected. We also prove a nonlinear superposition principle for these nonlinear wave packets.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.