Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

On the Convergence of Gromov-Witten Potentials and Givental's Formula (1203.4193v2)

Published 19 Mar 2012 in math.AG and math.SG

Abstract: Let X be a smooth projective variety. The Gromov-Witten potentials of X are generating functions for the Gromov-Witten invariants of X: they are formal power series, sometimes in infinitely many variables, with Taylor coefficients given by Gromov-Witten invariants of X. It is natural to ask whether these formal power series converge. In this paper we describe and analyze various notions of convergence for Gromov-Witten potentials. Using results of Givental and Teleman, we show that if the quantum cohomology of X is analytic and generically semisimple then the genus-g Gromov-Witten potential of X converges for all g. We deduce convergence results for the all-genus Gromov-Witten potentials of compact toric varieties, complete flag varieties, and certain non-compact toric varieties.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube