Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivariant Gromov-Witten Theory of GKM Orbifolds (1604.07270v2)

Published 25 Apr 2016 in math.AG

Abstract: In this paper, we study the all genus Gromov-Witten theory for any GKM orbifold $X$. We generalize the Givental formula which is studied in the smooth case in \cite{Giv2} \cite{Giv3} \cite{Giv4} to the orbifold case. Specifically, we recover the higher genus Gromov-Witten invariants of a GKM orbifold $X$ by its genus zero data. When $X$ is toric, the genus zero Gromov-Witten invariants of $X$ can be explicitly computed by the mirror theorem studied in \cite{CCIT} and our main theorem gives a closed formula for the all genus Gromov-Witten invariants of $X$. When $X$ is a toric Calabi-Yau 3-orbifold, our formula leads to a proof of the Remodeling Conjecture in \cite{Fang-Liu-Zong3}.

Summary

We haven't generated a summary for this paper yet.