Papers
Topics
Authors
Recent
Search
2000 character limit reached

Tensor Rank and Strong Quantum Nondeterminism in Multiparty Communication

Published 29 Feb 2012 in cs.CC and quant-ph | (1202.6444v3)

Abstract: In this paper we study quantum nondeterminism in multiparty communication. There are three (possibly) different types of nondeterminism in quantum computation: i) strong, ii) weak with classical proofs, and iii) weak with quantum proofs. Here we focus on the first one. A strong quantum nondeterministic protocol accepts a correct input with positive probability, and rejects an incorrect input with probability 1. In this work we relate strong quantum nondeterministic multiparty communication complexity to the rank of the communication tensor in the Number-On-Forehead and Number-In-Hand models. In particular, by extending the definition proposed by de Wolf to {\it nondeterministic tensor-rank} ($nrank$), we show that for any boolean function $f$ when there is no prior shared entanglement between the players, 1) in the Number-On-Forehead model, the cost is upper-bounded by the logarithm of $nrank(f)$; 2) in the Number-In-Hand model, the cost is lower-bounded by the logarithm of $nrank(f)$. Furthermore, we show that when the number of players is $o(\log\log n)$ we have that $NQP\nsubseteq BQP$ for Number-On-Forehead communication.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.