2000 character limit reached
Modules over cluster-tilted algebras determined by their dimension vectors (1202.5698v1)
Published 25 Feb 2012 in math.RT and math.RA
Abstract: We prove that indecomposable transjective modules over cluster-tilted algebras are uniquely determined by their dimension vectors. Similarly, we prove that for cluster-concealed algebras, rigid modules lifting to rigid objects in the corresponding cluster category are uniquely determined by their dimension vectors. Finally, we apply our results to a conjecture of Fomin and Zelevinsky on denominators of cluster variables.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.