Palatini-Lovelock-Cartan Gravity - Bianchi Identities for Stringy Fluxes (1202.4934v2)
Abstract: A Palatini-type action for Einstein and Gauss-Bonnet gravity with non-trivial torsion is proposed. Three-form flux is incorporated via a deformation of the Riemann tensor, and consistency of the Palatini variational principle requires the flux to be covariantly constant and to satisfy a Jacobi identity. Studying gravity actions of third order in the curvature leads to a conjecture about general Palatini-Lovelock-Cartan gravity. We point out potential relations to string-theoretic Bianchi identities and, using the Schouten-Nijenhuis bracket, derive a set of Bianchi identities for the non-geometric Q- and R-fluxes which include derivative and curvature terms. Finally, the problem of relating torsional gravity to higher-order corrections of the bosonic string-effective action is revisited.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.