Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Level-Set Hit-and-Run Sampler for Quasi-Concave Distributions (1202.4094v1)

Published 18 Feb 2012 in stat.CO

Abstract: We develop a new sampling strategy that uses the hit-and-run algorithm within level sets of the target density. Our method can be applied to any quasi-concave density, which covers a broad class of models. Our sampler performs well in high-dimensional settings, which we illustrate with a comparison to Gibbs sampling on a spike-and-slab mixture model. We also extend our method to exponentially-tilted quasi-concave densities, which arise often in Bayesian models consisting of a log-concave likelihood and quasi-concave prior density. Within this class of models, our method is effective at sampling from posterior distributions with high dependence between parameters, which we illustrate with a simple multivariate normal example. We also implement our level-set sampler on a Cauchy-normal model where we demonstrate the ability of our level set sampler to handle multi-modal posterior distributions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.