Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 38 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 466 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Semiparametric Penalized Spline Regression (1202.3483v1)

Published 16 Feb 2012 in math.ST and stat.TH

Abstract: In this paper, we propose a new semiparametric regression estimator by using a hybrid technique of a parametric approach and a nonparametric penalized spline method. The overall shape of the true regression function is captured by the parametric part, while its residual is consistently estimated by the nonparametric part. Asymptotic theory for the proposed semiparametric estimator is developed, showing that its behavior is dependent on the asymptotics for the nonparametric penalized spline estimator as well as on the discrepancy between the true regression function and the parametric part. As a naturally associated application of asymptotics, some criteria for the selection of parametric models are addressed. Numerical experiments show that the proposed estimator performs better than the existing kernel-based semiparametric estimator and the fully nonparametric estimator, and that the proposed criteria work well for choosing a reasonable parametric model.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.