On the Geometry of Maximum Entropy Problems (1112.5529v4)
Abstract: We show that a simple geometric result suffices to derive the form of the optimal solution in a large class of finite and infinite-dimensional maximum entropy problems concerning probability distributions, spectral densities and covariance matrices. These include Burg's spectral estimation method and Dempster's covariance completion, as well as various recent generalizations of the above. We then apply this orthogonality principle to the new problem of completing a block-circulant covariance matrix when an a priori estimate is available.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.