Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Entropic covariance models (2306.03590v3)

Published 6 Jun 2023 in math.ST, stat.ML, and stat.TH

Abstract: In covariance matrix estimation, one of the challenges lies in finding a suitable model and an efficient estimation method. Two commonly used modelling approaches in the literature involve imposing linear restrictions on the covariance matrix or its inverse. Another approach considers linear restrictions on the matrix logarithm of the covariance matrix. In this paper, we present a general framework for linear restrictions on different transformations of the covariance matrix, including the mentioned examples. Our proposed estimation method solves a convex problem and yields an $M$-estimator, allowing for relatively straightforward asymptotic (in general) and finite sample analysis (in the Gaussian case). In particular, we recover standard $\sqrt{n/d}$ rates, where $d$ is the dimension of the underlying model. Our geometric insights allow to extend various recent results in covariance matrix modelling. This includes providing unrestricted parametrizations of the space of correlation matrices, which is alternative to a recent result utilizing the matrix logarithm.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (74)
  1. {barticle}[author] \bauthor\bsnmAméndola, \bfnmCarlos\binitsC. and \bauthor\bsnmZwiernik, \bfnmPiotr\binitsP. (\byear2021). \btitleLikelihood geometry of correlation models. \bjournalLe Matematiche \bvolume76 \bpages559–583. \endbibitem
  2. {barticle}[author] \bauthor\bsnmAndersen, \bfnmPer Kragh\binitsP. K. and \bauthor\bsnmGill, \bfnmRichard D\binitsR. D. (\byear1982). \btitleCox’s regression model for counting processes: a large sample study. \bjournalThe annals of statistics \bpages1100–1120. \endbibitem
  3. {barticle}[author] \bauthor\bsnmAnderson, \bfnmT. W.\binitsT. W. (\byear1973). \btitleAsymptotically efficient estimation of covariance matrices with linear structure. \bjournalAnnals of Statistics \bvolume1 \bpages135–141. \bmrnumber0331612 (48 ##9944) \endbibitem
  4. {btechreport}[author] \bauthor\bsnmAnderson, \bfnmTheodore W\binitsT. W. (\byear1978). \btitleMaximum likelihood estimation for vector autoregressive moving average models \btypeTechnical Report, \bpublisherSTANFORD UNIV CA DEPT OF STATISTICS. \endbibitem
  5. {barticle}[author] \bauthor\bsnmArchakov, \bfnmIlya\binitsI. and \bauthor\bsnmHansen, \bfnmPeter Reinhard\binitsP. R. (\byear2021). \btitleA new parametrization of correlation matrices. \bjournalEconometrica \bvolume89 \bpages1699–1715. \endbibitem
  6. {barticle}[author] \bauthor\bsnmAsai, \bfnmManabu\binitsM. and \bauthor\bsnmSo, \bfnmMike KP\binitsM. K. (\byear2015). \btitleLong memory and asymmetry for matrix-exponential dynamic correlation processes. \bjournalJournal of Time Series Econometrics \bvolume7 \bpages69–94. \endbibitem
  7. {barticle}[author] \bauthor\bsnmBanerjee, \bfnmOnureena\binitsO., \bauthor\bsnmGhaoui, \bfnmLaurent El\binitsL. E. and \bauthor\bsnmd’Aspremont, \bfnmAlexandre\binitsA. (\byear2008). \btitleModel selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. \bjournalJournal of Machine Learning Research \bvolume9 \bpages485–516. \endbibitem
  8. {bbook}[author] \bauthor\bsnmBarndorff-Nielsen, \bfnmOle Eiler\binitsO. E. (\byear1978). \btitleInformation and Exponential Families in Statistical Theory. \bpublisherWiley, \baddressNew York. \endbibitem
  9. {barticle}[author] \bauthor\bsnmBarratt, \bfnmShane\binitsS. and \bauthor\bsnmBoyd, \bfnmStephen\binitsS. (\byear2022). \btitleCovariance prediction via convex optimization. \bjournalOptimization and Engineering \bpages1–34. \endbibitem
  10. {barticle}[author] \bauthor\bsnmBattey, \bfnmHeather\binitsH. (\byear2017). \btitleEigen structure of a new class of covariance and inverse covariance matrices. \bjournalBernoulli \bvolume23 \bpages3166–3177. \bdoi10.3150/16-BEJ840 \bmrnumber3654802 \endbibitem
  11. {barticle}[author] \bauthor\bsnmBattey, \bfnmHS\binitsH. (\byear2019). \btitleOn sparsity scales and covariance matrix transformations. \bjournalBiometrika \bvolume106 \bpages605–617. \endbibitem
  12. {barticle}[author] \bauthor\bsnmBauer, \bfnmGregory H\binitsG. H. and \bauthor\bsnmVorkink, \bfnmKeith\binitsK. (\byear2011). \btitleForecasting multivariate realized stock market volatility. \bjournalJournal of Econometrics \bvolume160 \bpages93–101. \endbibitem
  13. {barticle}[author] \bauthor\bsnmBauschke, \bfnmHeinz H\binitsH. H. and \bauthor\bsnmBorwein, \bfnmJonathan M\binitsJ. M. (\byear1997). \btitleLegendre functions and the method of random Bregman projections. \bjournalJournal of convex analysis \bvolume4 \bpages27–67. \endbibitem
  14. {barticle}[author] \bauthor\bsnmBernstein, \bfnmDaniel Irving\binitsD. I., \bauthor\bsnmBlekherman, \bfnmGrigoriy\binitsG. and \bauthor\bsnmSinn, \bfnmRainer\binitsR. (\byear2020). \btitleTypical and generic ranks in matrix completion. \bjournalLinear Algebra and its Applications \bvolume585 \bpages71–104. \endbibitem
  15. {barticle}[author] \bauthor\bsnmBien, \bfnmJacob\binitsJ. and \bauthor\bsnmTibshirani, \bfnmRobert J\binitsR. J. (\byear2011). \btitleSparse estimation of a covariance matrix. \bjournalBiometrika \bvolume98 \bpages807–820. \endbibitem
  16. {barticle}[author] \bauthor\bsnmBlekherman, \bfnmGrigoriy\binitsG. and \bauthor\bsnmSinn, \bfnmRainer\binitsR. (\byear2019). \btitleMaximum likelihood threshold and generic completion rank of graphs. \bjournalDiscrete & Computational Geometry \bvolume61 \bpages303–324. \endbibitem
  17. {barticle}[author] \bauthor\bsnmBoik, \bfnmRobert J\binitsR. J. (\byear2002). \btitleSpectral models for covariance matrices. \bjournalBiometrika \bvolume89 \bpages159–182. \endbibitem
  18. {barticle}[author] \bauthor\bsnmBregman, \bfnmLev M\binitsL. M. (\byear1967). \btitleThe relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. \bjournalUSSR computational mathematics and mathematical physics \bvolume7 \bpages200–217. \endbibitem
  19. {barticle}[author] \bauthor\bsnmBrowne, \bfnmMichael W\binitsM. W. (\byear1974). \btitleGeneralized least squares estimators in the analysis of covariance structures. \bjournalSouth African Statistical Journal \bvolume8 \bpages1–24. \endbibitem
  20. {barticle}[author] \bauthor\bsnmBuhl, \bfnmSøren L\binitsS. L. (\byear1993). \btitleOn the existence of maximum likelihood estimators for graphical Gaussian models. \bjournalScandinavian Journal of Statistics \bpages263–270. \endbibitem
  21. {barticle}[author] \bauthor\bsnmCai, \bfnmT Tony\binitsT. T. and \bauthor\bsnmZhou, \bfnmHarrison H\binitsH. H. (\byear2012). \btitleOptimal rates of convergence for sparse covariance matrix estimation. \bjournalThe Annals of Statistics \bpages2389–2420. \endbibitem
  22. {barticle}[author] \bauthor\bsnmChaudhuri, \bfnmSanjay\binitsS., \bauthor\bsnmDrton, \bfnmMathias\binitsM. and \bauthor\bsnmRichardson, \bfnmThomas S\binitsT. S. (\byear2007). \btitleEstimation of a covariance matrix with zeros. \bjournalBiometrika \bvolume94 \bpages199–216. \endbibitem
  23. {barticle}[author] \bauthor\bsnmChiu, \bfnmTom YM\binitsT. Y., \bauthor\bsnmLeonard, \bfnmTom\binitsT. and \bauthor\bsnmTsui, \bfnmKam-Wah\binitsK.-W. (\byear1996). \btitleThe matrix-logarithmic covariance model. \bjournalJournal of the American Statistical Association \bvolume91 \bpages198–210. \endbibitem
  24. {barticle}[author] \bauthor\bsnmChristensen, \bfnmE. S.\binitsE. S. (\byear1989). \btitleStatistical Properties of I𝐼Iitalic_I-projections Within Exponential Families. \bjournalScandinavian Journal of Statistics \bvolume16 \bpages307–318. \endbibitem
  25. {barticle}[author] \bauthor\bsnmDavis, \bfnmChandler\binitsC. (\byear1957). \btitleAll convex invariant functions of hermitian matrices. \bjournalArchiv der Mathematik \bvolume8 \bpages276–278. \endbibitem
  26. {barticle}[author] \bauthor\bsnmDempster, \bfnmArthur P\binitsA. P. (\byear1972). \btitleCovariance selection. \bjournalBiometrics \bpages157–175. \endbibitem
  27. {barticle}[author] \bauthor\bsnmDeng, \bfnmXinwei\binitsX. and \bauthor\bsnmTsui, \bfnmKam-Wah\binitsK.-W. (\byear2013). \btitlePenalized covariance matrix estimation using a matrix-logarithm transformation. \bjournalJournal of Computational and Graphical Statistics \bvolume22 \bpages494–512. \endbibitem
  28. {barticle}[author] \bauthor\bsnmDhillon, \bfnmInderjit S\binitsI. S. and \bauthor\bsnmTropp, \bfnmJoel A\binitsJ. A. (\byear2008). \btitleMatrix nearness problems with Bregman divergences. \bjournalSIAM Journal on Matrix Analysis and Applications \bvolume29 \bpages1120–1146. \endbibitem
  29. {barticle}[author] \bauthor\bsnmDrton, \bfnmMathias\binitsM. and \bauthor\bsnmRichardson, \bfnmThomas S\binitsT. S. (\byear2008). \btitleGraphical methods for efficient likelihood inference in Gaussian covariance models. \bjournalJournal of Machine Learning Research \bvolume9 \bpages893–914. \endbibitem
  30. {barticle}[author] \bauthor\bsnmFriedman, \bfnmJerome\binitsJ., \bauthor\bsnmHastie, \bfnmTrevor\binitsT. and \bauthor\bsnmTibshirani, \bfnmRobert\binitsR. (\byear2008). \btitleSparse inverse covariance estimation with the graphical lasso. \bjournalBiostatistics \bvolume9 \bpages432–441. \endbibitem
  31. {barticle}[author] \bauthor\bsnmGeyer, \bfnmCharles J\binitsC. J. (\byear1994). \btitleOn the asymptotics of constrained M-estimation. \bjournalThe Annals of statistics \bpages1993–2010. \endbibitem
  32. {barticle}[author] \bauthor\bsnmGross, \bfnmE.\binitsE. and \bauthor\bsnmSullivant, \bfnmS.\binitsS. (\byear2018). \btitleThe maximum likelihood threshold of a graph. \bjournalBernoulli \bvolume24 \bpages386–407. \endbibitem
  33. {barticle}[author] \bauthor\bsnmHaberman, \bfnmShelby J\binitsS. J. (\byear1989). \btitleConcavity and estimation. \bjournalThe Annals of Statistics \bpages1631–1661. \endbibitem
  34. {barticle}[author] \bauthor\bsnmHan, \bfnmInsu\binitsI., \bauthor\bsnmAvron, \bfnmHaim\binitsH. and \bauthor\bsnmShin, \bfnmJinwoo\binitsJ. (\byear2018). \btitleStochastic chebyshev gradient descent for spectral optimization. \bjournalAdvances in Neural Information Processing Systems \bvolume31. \endbibitem
  35. {bbook}[author] \bauthor\bsnmHastie, \bfnmTrevor\binitsT., \bauthor\bsnmTibshirani, \bfnmRobert\binitsR. and \bauthor\bsnmWainwright, \bfnmMartin\binitsM. (\byear2015). \btitleStatistical learning with sparsity: the lasso and generalizations. \bpublisherCRC press. \endbibitem
  36. {bbook}[author] \bauthor\bsnmHiriart-Urruty, \bfnmJean-Baptiste\binitsJ.-B. and \bauthor\bsnmLemaréchal, \bfnmClaude\binitsC. (\byear2012). \btitleFundamentals of convex analysis. \bpublisherSpringer Science & Business Media. \endbibitem
  37. {barticle}[author] \bauthor\bsnmHøjsgaard, \bfnmSøren\binitsS. and \bauthor\bsnmLauritzen, \bfnmSteffen L\binitsS. L. (\byear2008). \btitleGraphical Gaussian models with edge and vertex symmetries. \bjournalJournal of the Royal Statistical Society: Series B (Statistical Methodology) \bvolume70 \bpages1005–1027. \endbibitem
  38. {barticle}[author] \bauthor\bsnmIshihara, \bfnmTsunehiro\binitsT., \bauthor\bsnmOmori, \bfnmYasuhiro\binitsY. and \bauthor\bsnmAsai, \bfnmManabu\binitsM. (\byear2016). \btitleMatrix exponential stochastic volatility with cross leverage. \bjournalComputational Statistics & Data Analysis \bvolume100 \bpages331–350. \endbibitem
  39. {barticle}[author] \bauthor\bsnmJennrich, \bfnmRobert I\binitsR. I. and \bauthor\bsnmSchluchter, \bfnmMark D\binitsM. D. (\byear1986). \btitleUnbalanced repeated-measures models with structured covariance matrices. \bjournalBiometrics \bpages805–820. \endbibitem
  40. {barticle}[author] \bauthor\bsnmJensen, \bfnmSoren Tolver\binitsS. T. (\byear1988). \btitleCovariance hypotheses which are linear in both the covariance and the inverse covariance. \bjournalThe Annals of Statistics \bvolume16 \bpages302–322. \endbibitem
  41. {barticle}[author] \bauthor\bsnmKauermann, \bfnmGöran\binitsG. (\byear1996). \btitleOn a dualization of graphical Gaussian models. \bjournalScandinavian journal of statistics \bpages105–116. \endbibitem
  42. {barticle}[author] \bauthor\bsnmKawakatsu, \bfnmHiroyuki\binitsH. (\byear2006). \btitleMatrix exponential GARCH. \bjournalJournal of Econometrics \bvolume134 \bpages95–128. \endbibitem
  43. {bbook}[author] \bauthor\bsnmLauritzen, \bfnmSteffen\binitsS. (\byear2023). \btitleFundamentals of Mathematical Statistics. \bpublisherCRC Press. \endbibitem
  44. {barticle}[author] \bauthor\bsnmLauritzen, \bfnmSteffen\binitsS. and \bauthor\bsnmZwiernik, \bfnmPiotr\binitsP. (\byear2022). \btitleLocally associated graphical models and mixed convex exponential families. \bjournalThe Annals of Statistics \bvolume50 \bpages3009–3038. \endbibitem
  45. {barticle}[author] \bauthor\bsnmLeonard, \bfnmTom\binitsT. and \bauthor\bsnmHsu, \bfnmJohn SJ\binitsJ. S. (\byear1992). \btitleBayesian inference for a covariance matrix. \bjournalThe Annals of Statistics \bvolume20 \bpages1669–1696. \endbibitem
  46. {barticle}[author] \bauthor\bsnmLeSage, \bfnmJames P\binitsJ. P. and \bauthor\bsnmPace, \bfnmR Kelley\binitsR. K. (\byear2007). \btitleA matrix exponential spatial specification. \bjournalJournal of Econometrics \bvolume140 \bpages190–214. \endbibitem
  47. {barticle}[author] \bauthor\bsnmLewis, \bfnmAdrian S\binitsA. S. (\byear1996a). \btitleConvex analysis on the Hermitian matrices. \bjournalSIAM Journal on Optimization \bvolume6 \bpages164–177. \endbibitem
  48. {barticle}[author] \bauthor\bsnmLewis, \bfnmAdrian S\binitsA. S. (\byear1996b). \btitleDerivatives of spectral functions. \bjournalMathematics of Operations Research \bvolume21 \bpages576–588. \endbibitem
  49. {barticle}[author] \bauthor\bsnmLewis, \bfnmAdrian S\binitsA. S. and \bauthor\bsnmSendov, \bfnmHristo S\binitsH. S. (\byear2001). \btitleTwice differentiable spectral functions. \bjournalSIAM Journal on Matrix Analysis and Applications \bvolume23 \bpages368–386. \endbibitem
  50. {barticle}[author] \bauthor\bsnmLin, \bfnmLina\binitsL., \bauthor\bsnmDrton, \bfnmMathias\binitsM. and \bauthor\bsnmShojaie, \bfnmAli\binitsA. (\byear2016). \btitleEstimation of high-dimensional graphical models using regularized score matching. \bjournalElectronic journal of statistics \bvolume10 \bpages806. \endbibitem
  51. {barticle}[author] \bauthor\bsnmLin, \bfnmZ\binitsZ., \bauthor\bsnmMüller, \bfnmH-G\binitsH.-G. and \bauthor\bsnmPark, \bfnmBU\binitsB. (\byear2023). \btitleAdditive models for symmetric positive-definite matrices and Lie groups. \bjournalBiometrika \bvolume110 \bpages361–379. \endbibitem
  52. {barticle}[author] \bauthor\bsnmLlorens-Terrazas, \bfnmJordi\binitsJ. and \bauthor\bsnmBrownlees, \bfnmChristian\binitsC. (\byear2022). \btitleProjected Dynamic Conditional Correlations. \bjournalInternational Journal of Forecasting. \endbibitem
  53. {barticle}[author] \bauthor\bsnmLugosi, \bfnmGábor\binitsG. and \bauthor\bsnmMendelson, \bfnmShahar\binitsS. (\byear2019). \btitleMean estimation and regression under heavy-tailed distributions: A survey. \bjournalFoundations of Computational Mathematics \bvolume19 \bpages1145–1190. \endbibitem
  54. {barticle}[author] \bauthor\bsnmNiemiro, \bfnmWojciech\binitsW. (\byear1992). \btitleAsymptotics for M-estimators defined by convex minimization. \bjournalThe Annals of Statistics \bpages1514–1533. \endbibitem
  55. {barticle}[author] \bauthor\bsnmPavlov, \bfnmDmitrii\binitsD. (\byear2023). \btitleLogarithmically Sparse Symmetric Matrices. \bjournalarXiv preprint arXiv:2301.10042. \endbibitem
  56. {barticle}[author] \bauthor\bsnmPavlov, \bfnmDmitrii\binitsD., \bauthor\bsnmSturmfels, \bfnmBernd\binitsB. and \bauthor\bsnmTelen, \bfnmSimon\binitsS. (\byear2022). \btitleGibbs Manifolds. \bjournalarXiv preprint arXiv:2211.15490. \endbibitem
  57. {barticle}[author] \bauthor\bsnmPearl, \bfnmJudea\binitsJ. and \bauthor\bsnmWermuth, \bfnmNanny\binitsN. (\byear1994). \btitleWhen can association graphs admit a causal interpretation. \bjournalSelecting Models from Data: Artificial Intelligence and Statistics IV \bvolume89 \bpages205–214. \endbibitem
  58. {barticle}[author] \bauthor\bsnmPourahmadi, \bfnmMohsen\binitsM. (\byear2000). \btitleMaximum likelihood estimation of generalised linear models for multivariate normal covariance matrix. \bjournalBiometrika \bvolume87 \bpages425–435. \endbibitem
  59. {barticle}[author] \bauthor\bsnmPourahmadi, \bfnmMohsen\binitsM. (\byear2011). \btitleCovariance estimation: the GLM and regularization perspectives. \bjournalStatist. Sci. \bvolume26 \bpages369–387. \bdoi10.1214/11-STS358 \bmrnumber2917961 \endbibitem
  60. {bbook}[author] \bauthor\bsnmPourahmadi, \bfnmMohsen\binitsM. (\byear2013). \btitleHigh-dimensional covariance estimation: with high-dimensional data \bvolume882. \bpublisherJohn Wiley & Sons. \endbibitem
  61. {barticle}[author] \bauthor\bsnmRavikumar, \bfnmPradeep\binitsP., \bauthor\bsnmWainwright, \bfnmMartin J\binitsM. J. and \bauthor\bsnmLafferty, \bfnmJohn D\binitsJ. D. (\byear2010). \btitleHigh-dimensional Ising model selection using ℓ⁢1ℓ1\ell 1roman_ℓ 1-regularized logistic regression. \bjournalThe Annals of Statistics \bvolume38 \bpages1287–1319. \endbibitem
  62. {bbook}[author] \bauthor\bsnmRockafellar, \bfnmR Tyrrell\binitsR. T. (\byear1970). \btitleConvex analysis \bvolume28. \bpublisherPrinceton University Press. \endbibitem
  63. {barticle}[author] \bauthor\bsnmRossell, \bfnmDavid\binitsD. and \bauthor\bsnmZwiernik, \bfnmPiotr\binitsP. (\byear2020). \btitleDependence in elliptical partial correlation graphs. \bjournalarXiv preprint arXiv:2004.13779. \endbibitem
  64. {barticle}[author] \bauthor\bsnmRybak, \bfnmJakub\binitsJ. and \bauthor\bsnmBattey, \bfnmHeather S\binitsH. S. (\byear2021). \btitleSparsity induced by covariance transformation: some deterministic and probabilistic results. \bjournalProceedings of the Royal Society A \bvolume477 \bpages20200756. \endbibitem
  65. {barticle}[author] \bauthor\bsnmSturmfels, \bfnmBernd\binitsB., \bauthor\bsnmTimme, \bfnmSascha\binitsS. and \bauthor\bsnmZwiernik, \bfnmPiotr\binitsP. (\byear2019). \btitleEstimating linear covariance models with numerical nonlinear algebra. \bjournalarXiv preprint arXiv:1909.00566. \endbibitem
  66. {barticle}[author] \bauthor\bsnmSullivant, \bfnmSeth\binitsS., \bauthor\bsnmTalaska, \bfnmKelli\binitsK. and \bauthor\bsnmDraisma, \bfnmJan\binitsJ. (\byear2010). \btitleTrek separation for Gaussian graphical models. \bjournalAnn. Statist. \bvolume38 \bpages1665–1685. \bdoi10.1214/09-AOS760 \bmrnumber2662356 \endbibitem
  67. {barticle}[author] \bauthor\bsnmSzatrowski, \bfnmTed H\binitsT. H. (\byear1978). \btitleExplicit solutions, one iteration convergence and averaging in the multivariate normal estimation problem for patterned means and covariance. \bjournalAnnals of the Institute of Statistical Mathematics \bvolume30 \bpagesp81–88. \endbibitem
  68. {barticle}[author] \bauthor\bsnmSzatrowski, \bfnmTed H\binitsT. H. (\byear1980). \btitleNecessary and sufficient conditions for explicit solutions in the multivariate normal estimation problem for patterned means and covariances. \bjournalThe Annals of Statistics \bpages802–810. \endbibitem
  69. {barticle}[author] \bauthor\bsnmSzatrowski, \bfnmTed H\binitsT. H. (\byear2004). \btitlePatterned covariances. \bjournalEncyclopedia of statistical sciences \bvolume9. \endbibitem
  70. {barticle}[author] \bauthor\bsnmUhler, \bfnmCaroline\binitsC. (\byear2012). \btitleGeometry of maximum likelihood estimation in Gaussian graphical models. \bjournalAnn. Statist. \bvolume40 \bpages238–261. \endbibitem
  71. {bbook}[author] \bauthor\bsnmWainwright, \bfnmMartin J\binitsM. J. (\byear2019). \btitleHigh-dimensional statistics: A non-asymptotic viewpoint \bvolume48. \bpublisherCambridge University Press. \endbibitem
  72. {barticle}[author] \bauthor\bsnmWatkins, \bfnmWilliam\binitsW. (\byear1974). \btitleConvex matrix functions. \bjournalProceedings of the American Mathematical Society \bvolume44 \bpages31–34. \endbibitem
  73. {barticle}[author] \bauthor\bsnmYuan, \bfnmMing\binitsM. and \bauthor\bsnmLin, \bfnmYi\binitsY. (\byear2007). \btitleModel selection and estimation in the Gaussian graphical model. \bjournalBiometrika \bvolume94 \bpages19–35. \endbibitem
  74. {barticle}[author] \bauthor\bsnmZwiernik, \bfnmPiotr\binitsP., \bauthor\bsnmUhler, \bfnmCaroline\binitsC. and \bauthor\bsnmRichards, \bfnmDonald\binitsD. (\byear2017). \btitleMaximum likelihood estimation for linear Gaussian covariance models. \bjournalJournal of the Royal Statistical Society. Series B: Statistical Methodology \bvolume79. \endbibitem
Citations (2)

Summary

We haven't generated a summary for this paper yet.