Combining One-Class Classifiers via Meta-Learning (1112.5246v3)
Abstract: Selecting the best classifier among the available ones is a difficult task, especially when only instances of one class exist. In this work we examine the notion of combining one-class classifiers as an alternative for selecting the best classifier. In particular, we propose two new one-class classification performance measures to weigh classifiers and show that a simple ensemble that implements these measures can outperform the most popular one-class ensembles. Furthermore, we propose a new one-class ensemble scheme, TUPSO, which uses meta-learning to combine one-class classifiers. Our experiments demonstrate the superiority of TUPSO over all other tested ensembles and show that the TUPSO performance is statistically indistinguishable from that of the hypothetical best classifier.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.