Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relearning ensemble selection based on new generated features (2106.06761v1)

Published 12 Jun 2021 in cs.LG

Abstract: The ensemble methods are meta-algorithms that combine several base machine learning techniques to increase the effectiveness of the classification. Many existing committees of classifiers use the classifier selection process to determine the optimal set of base classifiers. In this article, we propose the classifiers selection framework with relearning base classifiers. Additionally, we use in the proposed framework the new generated feature, which can be obtained after the relearning process. The proposed technique was compared with state-of-the-art ensemble methods using three benchmark datasets and one synthetic dataset. Four classification performance measures are used to evaluate the proposed method.

Summary

We haven't generated a summary for this paper yet.