Papers
Topics
Authors
Recent
2000 character limit reached

Dimension reduction in stochastic modeling of coupled problems (1112.4761v2)

Published 20 Dec 2011 in math.AP and math.PR

Abstract: Coupled problems with various combinations of multiple physics, scales, and domains are found in numerous areas of science and engineering. A key challenge in the formulation and implementation of corresponding coupled numerical models is to facilitate the communication of information across physics, scale, and domain interfaces, as well as between the iterations of solvers used for response computations. In a probabilistic context, any information that is to be communicated between subproblems or iterations should be characterized by an appropriate probabilistic representation. Although the number of sources of uncertainty can be expected to be large in most coupled problems, our contention is that exchanged probabilistic information often resides in a considerably lower dimensional space than the sources themselves. This work thus presents an investigation into the characterization of the exchanged information by a reduced-dimensional representation and, in particular, by an adaptation of the Karhunen-Loeve decomposition. The effectiveness of the proposed dimension-reduction methodology is analyzed and demonstrated through a multiphysics problem relevant to nuclear engineering.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.