Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic flux surrogate-based partitioned methods for interface problems (2402.03560v1)

Published 5 Feb 2024 in cs.CE and math.DS

Abstract: Partitioned methods for coupled problems rely on data transfers between subdomains to synchronize the subdomain equations and enable their independent solution. By treating each subproblem as a separate entity, these methods enable code reuse, increase concurrency and provide a convenient framework for plug-and-play multiphysics simulations. However, accuracy and stability of partitioned methods depends critically on the type of information exchanged between the subproblems. The exchange mechanisms can vary from minimally intrusive remap across interfaces to more accurate but also more intrusive and expensive estimates of the necessary information based on monolithic formulations of the coupled system. These transfer mechanisms are separated by accuracy, performance and intrusiveness gaps that tend to limit the scope of the resulting partitioned methods to specific simulation scenarios. Data-driven system identification techniques provide an opportunity to close these gaps by enabling the construction of accurate, computationally efficient and minimally intrusive data transfer surrogates. This approach shifts the principal computational burden to an offline phase, leaving the application of the surrogate as the sole additional cost during the online simulation phase. In this paper we formulate and demonstrate such a \emph{dynamic flux surrogate-based} partitioned method for a model advection-diffusion transmission problem by using Dynamic Mode Decomposition (DMD) to learn the dynamics of the interface flux from data. The accuracy of the resulting DMD flux surrogate is comparable to that of a dual Schur complement reconstruction, yet its application cost is significantly lower. Numerical results confirm the attractive properties of the new partitioned approach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (46)
  1. doi:https://doi.org/10.1016/S0045-7825(00)00391-1. URL https://www.sciencedirect.com/science/article/pii/S0045782500003911
  2. doi:10.1007/s00466-017-1394-3. URL https://doi.org/10.1007/s00466-017-1394-3
  3. arXiv:https://doi.org/10.1137/120881397, doi:10.1137/120881397. URL https://doi.org/10.1137/120881397
  4. doi:https://doi.org/10.1016/j.jcp.2003.08.010. URL https://www.sciencedirect.com/science/article/pii/S0021999103004340
  5. arXiv:https://doi.org/10.1137/21M1461149, doi:10.1137/21M1461149. URL https://doi.org/10.1137/21M1461149
  6. doi:10.1002/nme.1147. URL http://dx.doi.org/10.1002/nme.1147
  7. doi:http://dx.doi.org/10.1016/j.jcp.2015.11.055. URL http://www.sciencedirect.com/science/article/pii/S0021999115008037
  8. doi:https://doi.org/10.1016/j.compfluid.2016.04.003. URL http://www.sciencedirect.com/science/article/pii/S0045793016300974
  9. doi:10.5281/zenodo.2560287. URL https://doi.org/10.5281/zenodo.2560287
  10. doi:10.5194/gmd-2021-323. URL https://gmd.copernicus.org/preprints/gmd-2021-323/
  11. arXiv:http://hpc.sagepub.com/content/19/3/341.full.pdf+html, doi:10.1177/1094342005056120. URL http://hpc.sagepub.com/content/19/3/341.abstract
  12. arXiv:https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019MS001870, doi:10.1029/2019MS001870. URL https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019MS001870
  13. arXiv:https://doi.org/10.1177/1094342011428141, doi:10.1177/1094342011428141. URL https://doi.org/10.1177/1094342011428141
  14. doi:10.1002/cpa.3160480203. URL http://dx.doi.org/10.1002/cpa.3160480203
  15. arXiv:http://dx.doi.org/10.1137/09076605X, doi:10.1137/09076605X. URL http://dx.doi.org/10.1137/09076605X
  16. doi:http://dx.doi.org/10.1016/j.cma.2006.09.002. URL http://www.sciencedirect.com/science/article/pii/S0045782506002544
  17. arXiv:http://dx.doi.org/10.1137/130919398, doi:10.1137/130919398. URL http://dx.doi.org/10.1137/130919398
  18. doi:http://dx.doi.org/10.1016/j.jcp.2014.03.004. URL http://www.sciencedirect.com/science/article/pii/S0021999114001764
  19. doi:http://dx.doi.org/10.1016/j.jcp.2013.02.050. URL http://www.sciencedirect.com/science/article/pii/S002199911300185X
  20. arXiv:http://dx.doi.org/10.1137/S0036142903425409, doi:10.1137/S0036142903425409. URL http://dx.doi.org/10.1137/S0036142903425409
  21. arXiv:http://dx.doi.org/10.1137/130946125, doi:10.1137/130946125. URL http://dx.doi.org/10.1137/130946125
  22. doi:http://dx.doi.org/10.1016/0045-7825(85)90085-4. URL http://www.sciencedirect.com/science/article/pii/0045782585900854
  23. doi:10.1002/nme.1620371111. URL http://dx.doi.org/10.1002/nme.1620371111
  24. doi:https://doi.org/10.1016/S0045-7825(00)00378-9. URL http://www.sciencedirect.com/science/article/pii/S0045782500003789
  25. doi:http://dx.doi.org/10.1016/j.cma.2008.11.006. URL http://www.sciencedirect.com/science/article/pii/S0045782508004076
  26. doi:http://dx.doi.org/10.1016/j.cma.2008.02.017. URL http://www.sciencedirect.com/science/article/pii/S0045782508000625
  27. doi:https://doi.org/10.1016/j.cma.2023.116134. URL https://www.sciencedirect.com/science/article/pii/S004578252300258X
  28. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.7334, doi:https://doi.org/10.1002/nme.7334. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.7334
  29. doi:https://doi.org/10.1016/j.camwa.2018.09.045. URL https://www.sciencedirect.com/science/article/pii/S0898122118305637
  30. doi:https://doi.org/10.1016/j.rinam.2020.100110. URL http://www.sciencedirect.com/science/article/pii/S2590037420300200
  31. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.4818, doi:10.1002/nme.4818. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.4818
  32. doi:https://doi.org/10.1007/s0046.
  33. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/num.23015, doi:https://doi.org/10.1002/num.23015. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/num.23015
  34. doi:10.1002/gamm.201490016. URL http://dx.doi.org/10.1002/gamm.201490016
  35. doi:http://dx.doi.org/10.1016/j.procs.2015.05.473. URL http://www.sciencedirect.com/science/article/pii/S1877050915012818
  36. doi:10.1007/s11071-005-2824-x. URL https://doi.org/10.1007/s11071-005-2824-x
  37. doi:10.1017/S0022112009992059.
  38. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5490, doi:https://doi.org/10.1002/nme.5490. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5490
  39. arXiv:2111.02280.
  40. doi:https://doi.org/10.1016/j.jcp.2022.111852. URL https://www.sciencedirect.com/science/article/pii/S0021999122009159
  41. arXiv:https://pubs.aip.org/aip/pof/article-pdf/doi/10.1063/1.4913868/15922234/037102_1_online.pdf, doi:10.1063/1.4913868. URL https://doi.org/10.1063/1.4913868
  42. arXiv:http://dx.doi.org/10.1137/130912621, doi:10.1137/130912621. URL http://dx.doi.org/10.1137/130912621
  43. doi:https://doi.org/10.1016/j.jcp.2008.04.006. URL http://www.sciencedirect.com/science/article/pii/S0021999108002192
  44. doi:http://dx.doi.org/10.1016/S0045-7825(97)00216-8. URL http://www.sciencedirect.com/science/article/pii/S0045782597002168
  45. doi:https://doi.org/10.1016/j.cma.2020.112982. URL https://www.sciencedirect.com/science/article/pii/S0045782520301651
  46. arXiv:https://doi.org/10.1137/0733033, doi:10.1137/0733033. URL https://doi.org/10.1137/0733033
Citations (1)

Summary

We haven't generated a summary for this paper yet.