Papers
Topics
Authors
Recent
2000 character limit reached

Asymptotic Analysis of Stochastic Variational Inequalities Modeling an Elasto-Plastic Problem with Vanishing Jumps

Published 20 Dec 2011 in math.NA and math.PR | (1112.4635v1)

Abstract: In a previous work by the first author with J. Turi (AMO, 08), a stochastic variational inequality has been introduced to model an elasto-plastic oscillator with noise. A major advantage of the stochastic variational inequality is to overcome the need to describe the trajectory by phases (elastic or plastic). This is useful, since the sequence of phases cannot be characterized easily. In particular, there are numerous small elastic phases which may appear as an artefact of the Wiener process. However, it remains important to have informations on these phases. In order to reconcile these contradictory issues, we introduce an approximation of stochastic variational inequalities by imposing artificial small jumps between phases allowing a clear separation of the phases. In this work, we prove that the approximate solution converges on any finite time interval, when the size of jumps tends to 0.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.