Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Total variation distance between a jump-equation and its Gaussian approximation (2212.07417v1)

Published 14 Dec 2022 in math.PR, cs.NA, and math.NA

Abstract: We deal with stochastic differential equations with jumps. In order to obtain an accurate approximation scheme, it is usual to replace the "small jumps" by a Brownian motion. In this paper, we prove that for every fixed time $t$, the approximate random variable $X\varepsilon_t$ converges to the original random variable $X_t$ in total variation distance and we estimate the error. We also give an estimate of the distance between the densities of the laws of the two random variables. These are done by using some integration by parts techniques in Malliavin calculus.

Citations (5)

Summary

We haven't generated a summary for this paper yet.