Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 415 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Fine Gaussian fluctuations on the Poisson space, I: contractions, cumulants and geometric random graphs (1111.7312v3)

Published 30 Nov 2011 in math.PR

Abstract: We study the normal approximation of functionals of Poisson measures having the form of a finite sum of multiple integrals. When the integrands are nonnegative, our results yield necessary and sufficient conditions for central limit theorems. These conditions can always be expressed in terms of contraction operators or, equivalently, fourth cumulants. Our findings are specifically tailored to deal with the normal approximation of the geometric $U$-statistics introduced by Reitzner and Schulte (2011). In particular, we shall provide a new analytic characterization of geometric random graphs whose edge-counting statistics exhibit asymptotic Gaussian fluctuations, and describe a new form of Poisson convergence for stationary random graphs with sparse connections. In a companion paper, the above analysis is extended to general $U$-statistics of marked point processes with possibly rescaled kernels.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.