Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the entropy and log-concavity of compound Poisson measures (0805.4112v1)

Published 27 May 2008 in cs.IT, math.IT, and math.PR

Abstract: Motivated, in part, by the desire to develop an information-theoretic foundation for compound Poisson approximation limit theorems (analogous to the corresponding developments for the central limit theorem and for simple Poisson approximation), this work examines sufficient conditions under which the compound Poisson distribution has maximal entropy within a natural class of probability measures on the nonnegative integers. We show that the natural analog of the Poisson maximum entropy property remains valid if the measures under consideration are log-concave, but that it fails in general. A parallel maximum entropy result is established for the family of compound binomial measures. The proofs are largely based on ideas related to the semigroup approach introduced in recent work by Johnson for the Poisson family. Sufficient conditions are given for compound distributions to be log-concave, and specific examples are presented illustrating all the above results.

Citations (15)

Summary

We haven't generated a summary for this paper yet.