On the problem of reversibility of the entropy power inequality
Abstract: As was shown recently by the authors, the entropy power inequality can be reversed for independent summands with sufficiently concave densities, when the distributions of the summands are put in a special position. In this note it is proved that reversibility is impossible over the whole class of convex probability distributions. Related phenomena for identically distributed summands are also discussed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.