Papers
Topics
Authors
Recent
2000 character limit reached

On a General Sextic Equation Solved by the Rogers Ramanujan Continued Fraction

Published 22 Nov 2011 in math.GM | (1111.6023v2)

Abstract: In this article we solve a general class of sextic equations. The solution follows if we consider the $j$-invariant and relate it with the polynomial equation's coefficients. The form of the solution is a relation of Rogers-Ramanujan continued fraction. The inverse technique can also be used for the evaluation of the Rogers-Ramanujan continued fraction, in which the equation is not now the depressed equation but another quite more simplified equation.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.