Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bound states of a quartic and sextic inverse-powerlaw potential for all angular momenta (2103.03349v1)

Published 3 Mar 2021 in quant-ph, cs.NA, math.NA, and physics.app-ph

Abstract: We use the tridiagonal representation approach to solve the radial Schr\"odinger equation for an inverse power-law potential of a combined quartic and sextic degrees and for all angular momenta. The amplitude of the quartic singularity is larger than that of the sextic but the signs are negative and positive, respectively. It turns out that the system has a finite number of bound states, which is determined by the larger ratio of the two singularity amplitudes. The solution is written as a finite series of square integrable functions written in terms of the Bessel polynomial.

Citations (3)

Summary

We haven't generated a summary for this paper yet.