Proof of a stronger version of the AJ conjecture for torus knots
Abstract: For a knot $K$ in $S3$, the $sl_2$-colored Jones function $J_K(n)$ is a sequence of Laurent polynomials in the variable $t$, which is known to satisfy non-trivial linear recurrence relations. The operator corresponding to the minimal linear recurrence relation is called the recurrence polynomial of $K$. The AJ conjecture \cite{Ga04} states that when reducing $t=-1$, the recurrence polynomial is essentially equal to the $A$-polynomial of $K$. In this paper we consider a stronger version of the AJ conjecture, proposed by Sikora \cite{Si}, and confirm it for all torus knots.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.