Papers
Topics
Authors
Recent
2000 character limit reached

Uncertainty Quantification in Hybrid Dynamical Systems (1111.4157v2)

Published 17 Nov 2011 in stat.CO, math.DS, and stat.AP

Abstract: Uncertainty quantification (UQ) techniques are frequently used to ascertain output variability in systems with parametric uncertainty. Traditional algorithms for UQ are either system-agnostic and slow (such as Monte Carlo) or fast with stringent assumptions on smoothness (such as polynomial chaos and Quasi-Monte Carlo). In this work, we develop a fast UQ approach for hybrid dynamical systems by extending the polynomial chaos methodology to these systems. To capture discontinuities, we use a wavelet-based Wiener-Haar expansion. We develop a boundary layer approach to propagate uncertainty through separable reset conditions. We also introduce a transport theory based approach for propagating uncertainty through hybrid dynamical systems. Here the expansion yields a set of hyperbolic equations that are solved by integrating along characteristics. The solution of the partial differential equation along the characteristics allows one to quantify uncertainty in hybrid or switching dynamical systems. The above methods are demonstrated on example problems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.