Papers
Topics
Authors
Recent
2000 character limit reached

Genetic Algorithm (GA) in Feature Selection for CRF Based Manipuri Multiword Expression (MWE) Identification

Published 10 Nov 2011 in cs.CL and cs.NE | (1111.2399v1)

Abstract: This paper deals with the identification of Multiword Expressions (MWEs) in Manipuri, a highly agglutinative Indian Language. Manipuri is listed in the Eight Schedule of Indian Constitution. MWE plays an important role in the applications of Natural Language Processing(NLP) like Machine Translation, Part of Speech tagging, Information Retrieval, Question Answering etc. Feature selection is an important factor in the recognition of Manipuri MWEs using Conditional Random Field (CRF). The disadvantage of manual selection and choosing of the appropriate features for running CRF motivates us to think of Genetic Algorithm (GA). Using GA we are able to find the optimal features to run the CRF. We have tried with fifty generations in feature selection along with three fold cross validation as fitness function. This model demonstrated the Recall (R) of 64.08%, Precision (P) of 86.84% and F-measure (F) of 73.74%, showing an improvement over the CRF based Manipuri MWE identification without GA application.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.