Papers
Topics
Authors
Recent
2000 character limit reached

On converse Lyapunov theorems for fluid network models (1111.1990v1)

Published 8 Nov 2011 in math.DS

Abstract: We consider the class of closed generic fluid networks (GFN) models, which provides an abstract framework containing a wide variety of fluid networks. Within this framework a Lyapunov method for stability of GFN models was proposed by Ye and Chen. They proved that stability of a GFN model is equivalent to the existence of a functional on the set of paths that is decaying along paths. This result falls short of a converse Lyapunov theorem in that no state dependent Lyapunov function is constructed. In this paper we construct state-dependent Lyapunov functions in contrast to path-wise functionals. We first show by counterexamples that closed GFN models do not provide sufficient information that allow for a converse Lyapunov theorem. To resolve this problem we introduce the class of strict GFN models by forcing the closed GFN model to satisfy a concatenation and a semicontinuity condition of the set of paths in dependence of initial condition. For the class of strict GFN models we define a state-dependent Lyapunov and show that a converse Lyapunov theorem holds. Finally, it is shown that common fluid network models, like general work-conserving and priority fluid network models as well as certain linear Skorokhod problems define strict GFN models.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.