Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random-Time, State-Dependent Stochastic Drift for Markov Chains and Application to Stochastic Stabilization Over Erasure Channels (1010.4820v3)

Published 22 Oct 2010 in math.OC, cs.IT, cs.SY, and math.IT

Abstract: It is known that state-dependent, multi-step Lyapunov bounds lead to greatly simplified verification theorems for stability for large classes of Markov chain models. This is one component of the "fluid model" approach to stability of stochastic networks. In this paper we extend the general theory to randomized multi-step Lyapunov theory to obtain criteria for stability and steady-state performance bounds, such as finite moments. These results are applied to a remote stabilization problem, in which a controller receives measurements from an erasure channel with limited capacity. Based on the general results in the paper it is shown that stability of the closed loop system is assured provided that the channel capacity is greater than the logarithm of the unstable eigenvalue, plus an additional correction term. The existence of a finite second moment in steady-state is established under additional conditions.

Citations (64)

Summary

We haven't generated a summary for this paper yet.