Papers
Topics
Authors
Recent
2000 character limit reached

On the order optimality of the regularization via inexact Newton iterations (1111.1883v1)

Published 8 Nov 2011 in math.NA

Abstract: Inexact Newton regularization methods have been proposed by Hanke and Rieder for solving nonlinear ill-posed inverse problems. Every such a method consists of two components: an outer Newton iteration and an inner scheme providing increments by regularizing local linearized equations. The method is terminated by a discrepancy principle. In this paper we consider the inexact Newton regularization methods with the inner scheme defined by Landweber iteration, the implicit iteration, the asymptotic regularization and Tikhonov regularization. Under certain conditions we obtain the order optimal convergence rate result which improves the suboptimal one of Rieder. We in fact obtain a more general order optimality result by considering these inexact Newton methods in Hilbert scales.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.