Papers
Topics
Authors
Recent
2000 character limit reached

Angular momentum decomposition of the three-dimensional Wigner harmonic oscillator

Published 3 Nov 2011 in math-ph, math.MP, and quant-ph | (1111.0757v1)

Abstract: In the Wigner framework, one abandons the assumption that the usual canonical commutation relations are necessarily valid. Instead, the compatibility of Hamilton's equations and the Heisenberg equations are the starting point, and no further assumptions are made about how the position and momentum operators commute. Wigner quantization leads to new classes of solutions, and representations of Lie superalgebras are needed to describe them. For the n-dimensional Wigner harmonic oscillator, solutions are known in terms of the Lie superalgebras osp(1|2n) and gl(1|n). For n=3N, the question arises as to how the angular momentum decomposition of representations of these Lie superalgebras is computed. We construct generating functions for the angular momentum decomposition of specific series of representations of osp(1|6N) and gl(1|3N), with N=1 and N=2. This problem can be completely solved for N=1. However, for N=2 only some classes of representations allow executable computations

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.