Algebraic theory of vector-valued integration (1108.2913v3)
Abstract: We define a monad M on a category of measurable bornological sets, and we show how this monad gives rise to a theory of vector-valued integration that is related to the notion of Pettis integral. We show that an algebra X of this monad is a bornological locally convex vector space endowed with operations which associate vectors \int f dm in X to incoming maps f:T --> X and measures m on T. We prove that a Banach space is an M-algebra as soon as it has a Pettis integral for each incoming bounded weakly-measurable function. It follows that all separable Banach spaces, and all reflexive Banach spaces, are M-algebras.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.