Papers
Topics
Authors
Recent
2000 character limit reached

Restricted non-linear approximation in sequence spaces and applications to wavelet bases and interpolation

Published 12 Aug 2011 in math.CA and math.FA | (1108.2610v1)

Abstract: Restricted non-linear approximation is a type of N-term approximation where a measure $\nu$ on the index set (rather than the counting measure) is used to control the number of terms in the approximation. We show that embeddings for restricted non-linear approximation spaces in terms of weighted Lorentz sequence spaces are equivalent to Jackson and Bernstein type inequalities, and also to the upper and lower Temlyakov property. As applications we obtain results for wavelet bases in Triebel-Lizorkin spaces by showing the Temlyakow property in this setting. Moreover, new interpolation results for Triebel-Lizorkin and Besov spaces are obtained.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.