Quantum fluctuations of one-dimensional free fermions and Fisher-Hartwig formula for Toeplitz determinants (1108.1355v1)
Abstract: We revisit the problem of finding the probability distribution of a fermionic number of one-dimensional spinless free fermions on a segment of a given length. The generating function for this probability distribution can be expressed as a determinant of a Toeplitz matrix. We use the recently proven generalized Fisher--Hartwig conjecture on the asymptotic behavior of such determinants to find the generating function for the full counting statistics of fermions on a line segment. Unlike the method of bosonization, the Fisher--Hartwig formula correctly takes into account the discreteness of charge. Furthermore, we check numerically the precision of the generalized Fisher--Hartwig formula, find that it has a higher precision than rigorously proven so far, and conjecture the form of the next-order correction to the existing formula.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.